Skip to main content

Run MCP servers in Kubernetes

Prerequisites

  • A Kubernetes cluster (v1.19+)
  • Permissions to create resources in the cluster
  • kubectl configured to communicate with your cluster
  • The ToolHive operator installed in your cluster (see Deploy the operator using Helm)

Overview

The ToolHive operator deploys MCP servers in Kubernetes by creating proxy pods that manage the actual MCP server containers. Here's how the architecture works:

High-level architecture

This diagram shows the basic relationship between components. The ToolHive operator watches for MCPServer resources and automatically creates the necessary infrastructure to run your MCP servers securely within the cluster.

STDIO transport flow

For MCP servers using STDIO transport, the proxy directly attaches to the MCP server pod's standard input/output streams.

SSE transport flow

For MCP servers using Server-Sent Events (SSE) transport, the proxy creates both a pod and a headless service. This allows direct HTTP/SSE communication between the proxy and MCP server while maintaining network isolation and service discovery.

Create an MCP server

You can create MCPServer resources in namespaces based on how the operator was deployed.

  • Cluster mode (default): Create MCPServer resources in any namespace
  • Namespace mode: Create MCPServer resources only in allowed namespaces

See Deploy the operator to learn about the different deployment modes.

To create an MCP server, define an MCPServer resource and apply it to your cluster. This minimal example creates the osv MCP server which queries the Open Source Vulnerability (OSV) database for vulnerability information.

my-mcpserver.yaml
apiVersion: toolhive.stacklok.dev/v1alpha1
kind: MCPServer
metadata:
name: osv
namespace: my-namespace # Update with your namespace
spec:
image: ghcr.io/stackloklabs/osv-mcp/server
transport: sse
port: 8080
permissionProfile:
type: builtin
name: network
resources:
limits:
cpu: '100m'
memory: '128Mi'
requests:
cpu: '50m'
memory: '64Mi'

Apply the resource:

kubectl apply -f my-mcpserver.yaml
What's happening?

When you apply an MCPServer resource, here's what happens:

  1. The ToolHive operator detects the new resource (if it's in an allowed namespace)
  2. The operator automatically creates the necessary RBAC resources in the target namespace:
    • A ServiceAccount with the same name as the MCPServer
    • A Role with minimal permissions for StatefulSets, Services, Pods, and Pod logs/attach operations
    • A RoleBinding that connects the ServiceAccount to the Role
  3. The operator creates a new Deployment containing a ToolHive proxy pod and service to handle client connections
  4. The proxy creates the actual MCPServer pod containing your specified container image
  5. For STDIO transport, the proxy attaches directly to the pod; for SSE transport, a headless service is created for direct pod communication
  6. Clients can now connect through the service → proxy → MCP server chain to use the tools and resources (note: external clients will need an ingress controller or similar mechanism to access the service from outside the cluster)

Automatic RBAC management

The ToolHive operator automatically handles RBAC (Role-Based Access Control) for each MCPServer instance, providing better security isolation and multi-tenant support. Here's what the operator creates automatically:

  • ServiceAccount: A dedicated ServiceAccount with the same name as your MCPServer
  • Role: A namespace-scoped Role with minimal permissions for:
    • StatefulSets (create, get, list, watch, update, patch, delete)
    • Services (create, get, list, watch, update, patch, delete)
    • Pods (get, list, watch)
    • Pod logs and attach operations (get, list)
  • RoleBinding: Connects the ServiceAccount to the Role

This approach provides:

  • Each MCPServer operates with its own minimal set of permissions
  • No manual RBAC setup required
  • Better security isolation between different MCPServer instances
  • Support for multi-tenant deployments across different namespaces

For more examples of MCPServer resources, see the example MCP server manifests in the ToolHive repo.

Customize server settings

You can customize the MCP server by adding additional fields to the MCPServer resource. Here are some common configurations.

Customize the MCP server pod

You can customize the MCP server pod that gets created by the proxy using the podTemplateSpec field. This gives you full control over the pod specification, letting you set security contexts, resource limits, node selectors, and other pod-level configurations.

The podTemplateSpec field follows the standard Kubernetes PodTemplateSpec format, so you can use any valid pod specification options.

This example sets security contexts and resource limits. It lets the MCP container to run as root, an unfortunate requirement for the Fetch MCP server image, while still applying some security restrictions.

my-mcpserver-custom-pod.yaml
apiVersion: toolhive.stacklok.dev/v1alpha1
kind: MCPServer
metadata:
name: fetch
namespace: development # Can be any namespace
spec:
image: docker.io/mcp/fetch
transport: stdio
port: 8080
permissionProfile:
type: builtin
name: network
podTemplateSpec:
spec:
containers:
- name: mcp # This name must be "mcp"
securityContext:
allowPrivilegeEscalation: false
runAsNonRoot: false # Allows the MCP container to run as root
runAsUser: 0
capabilities:
drop:
- ALL
resources: # These resources apply to the MCP container
limits:
cpu: '500m'
memory: '512Mi'
requests:
cpu: '100m'
memory: '128Mi'
securityContext:
runAsNonRoot: true # The pod itself can run as a non-root user
seccompProfile:
type: RuntimeDefault
resources: # These resources apply to the proxy container
limits:
cpu: '100m'
memory: '128Mi'
requests:
cpu: '50m'
memory: '64Mi'
Container name requirement

When customizing containers in podTemplateSpec, you must use name: mcp for the main container. This ensures the proxy can properly manage the MCP server process.

Run a server with secrets

For MCP servers that require authentication tokens or other secrets, add the secrets field to the MCPServer resource. This example shows how to use a Kubernetes secret to pass a GitHub personal access token to the github MCP server.

my-mcpserver-with-secrets.yaml
apiVersion: toolhive.stacklok.dev/v1alpha1
kind: MCPServer
metadata:
name: github
namespace: production # Can be any namespace
spec:
image: ghcr.io/github/github-mcp-server
transport: stdio
port: 8080
permissionProfile:
type: builtin
name: network
secrets:
- name: github-token
key: token
targetEnvName: GITHUB_PERSONAL_ACCESS_TOKEN

First, create the secret. Note that the secret must be created in the same namespace as the MCP server and the key must match the one specified in the MCPServer resource.

kubectl -n production create secret generic github-token --from-literal=token=<YOUR_TOKEN>

Apply the MCPServer resource:

kubectl apply -f my-mcpserver-with-secrets.yaml

Mount a volume

You can mount volumes into the MCP server pod to provide persistent storage or access to data. This is useful for MCP servers that need to read/write files or access large datasets.

To do this, add a standard volumes field to the podTemplateSpec in the MCPServer resource and a volumeMounts section in the container specification. Here's an example that mounts a persistent volume claim (PVC) to the /projects path in the Filesystem MCP server. The PVC must already exist in the same namespace as the MCPServer.

my-mcpserver-with-volume.yaml
apiVersion: toolhive.stacklok.dev/v1alpha1
kind: MCPServer
metadata:
name: filesystem
namespace: data-processing # Can be any namespace
spec:
image: docker.io/mcp/filesystem
transport: stdio
port: 8080
permissionProfile:
type: builtin
name: none
podTemplateSpec:
spec:
volumes:
- name: my-mcp-data
persistentVolumeClaim:
claimName: my-mcp-data-claim
containers:
- name: mcp
# ... other container settings ...
volumeMounts:
- mountPath: /projects/my-mcp-data
name: my-mcp-data
readOnly: true

Check MCP server status

To check the status of your MCP servers in a specific namespace:

kubectl -n <NAMESPACE> get mcpservers

To check MCP servers across all namespaces:

kubectl get mcpservers --all-namespaces

The status, URL, and age of each MCP server is displayed.

For more details about a specific MCP server:

kubectl -n <NAMESPACE> describe mcpserver <NAME>

Configuration reference

MCPServer spec

FieldDescriptionRequiredDefault
imageContainer image for the MCP serverYes-
transportTransport method (stdio or sse)Nostdio
portPort to expose the MCP server onNo8080
targetPortPort to use for the MCP server (for SSE)No
argsAdditional arguments to pass to the MCP serverNo-
envEnvironment variables to set in the containerNo-
resourcesResource requirements for the containerNo-
secretsReferences to secrets to mount in the containerNo-
permissionProfilePermission profile configurationNo-
podTemplateSpecCustom pod specification for the MCP serverNo-

Secrets

The secrets field has the following parameters:

  • name: The name of the Kubernetes secret (required)
  • key: The key in the secret (required)
  • targetEnvName: The environment variable to be used when setting up the secret in the MCP server (optional). If left unspecified, it defaults to the key.

Permission Profiles

Permission profiles can be configured in two ways:

  1. Using a built-in profile:

    permissionProfile:
    type: builtin
    name: network # or "none"
  2. Using a ConfigMap:

    permissionProfile:
    type: configmap
    name: my-permission-profile
    key: profile.json

The ConfigMap should contain a JSON permissions profile.

Next steps

See the Client compatibility reference to learn how to connect to MCP servers using different clients.

Troubleshooting

MCPServer resource not creating pods

If your MCPServer resource is created but no pods appear, first ensure you created the MCPServer resource in an allowed namespace. If the operator runs in namespace mode and you didn't include the namespace in the allowedNamespaces list, the operator ignores the resource. Check the operator's configuration:

helm get values toolhive-operator -n toolhive-system

Check the operator.rbac.scope and operator.rbac.allowedNamespaces properties. If the operator runs in namespace mode, add the namespace where you created the MCPServer to the allowedNamespaces list. See Operator deployment modes.

If the operator runs in cluster mode (default) or the MCPServer is in an allowed namespace, check the operator logs and resource status:

# Check MCPServer status
kubectl -n <NAMESPACE> describe mcpserver <NAME>

# Check operator logs
kubectl -n toolhive-system logs -l app.kubernetes.io/name=toolhive-operator

# Verify the operator is running
kubectl -n toolhive-system get pods -l app.kubernetes.io/name=toolhive-operator

Other common causes include:

  • Operator not running: Ensure the ToolHive operator is deployed and running
  • Invalid image reference: Verify the container image exists and is accessible
  • RBAC issues: The operator automatically creates RBAC resources, but check for cluster-level permission issues
  • Resource quotas: Check if namespace resource quotas prevent pod creation

MCP server pod fails to start

If the MCP server pod is created but fails to start or is in CrashLoopBackOff:

# Check pod status
kubectl -n <NAMESPACE> get pods

# Describe the failing pod
kubectl -n <NAMESPACE> describe pod <POD_NAME>

# Check pod logs
kubectl -n <NAMESPACE> logs <POD_NAME> -c mcp

Common causes include:

  • Image pull errors: Verify the container image is accessible and the image name is correct
  • Missing secrets: Ensure required secrets exist and are properly referenced
  • Resource constraints: Check if the pod has sufficient CPU and memory resources
  • Permission issues: Verify the security context and permission profile are correctly configured
  • Invalid arguments: Check if the args field contains valid arguments for the MCP server

Proxy pod connection issues

If the proxy pod is running but clients cannot connect:

# Check proxy pod status
kubectl -n <NAMESPACE> get pods -l app.kubernetes.io/instance=<MCPSERVER_NAME>

# Check proxy logs
kubectl -n <NAMESPACE> logs -l app.kubernetes.io/instance=<MCPSERVER_NAME>

# Verify service is created
kubectl -n <NAMESPACE> get services

Common causes include:

  • Service not created: Ensure the proxy service exists and has the correct selectors
  • Port configuration: Verify the port field matches the MCP server's listening port
  • Transport mismatch: Ensure the transport field (stdio/sse) matches the MCP server's capabilities
  • Network policies: Check if network policies are blocking communication

Secret mounting issues

If secrets are not being properly mounted or environment variables are missing:

# Check if secret exists
kubectl -n <NAMESPACE> get secret <SECRET_NAME>

# Verify secret content
kubectl -n <NAMESPACE> describe secret <SECRET_NAME>

# Check environment variables in the pod
kubectl -n <NAMESPACE> exec <POD_NAME> -c mcp -- env | grep <ENV_VAR_NAME>

Common causes include:

  • Secret doesn't exist: Create the secret in the correct namespace
  • Wrong key name: Ensure the key field matches the actual key in the secret
  • Namespace mismatch: Secrets must be in the same namespace as the MCPServer
  • Permission issues: The operator automatically creates the necessary RBAC resources, but verify the ServiceAccount has access to read secrets

Volume mounting problems

If persistent volumes or other volumes are not mounting correctly:

# Check PVC status
kubectl -n <NAMESPACE> get pvc

# Describe the PVC
kubectl -n <NAMESPACE> describe pvc <PVC_NAME>

# Check volume mounts in the pod
kubectl -n <NAMESPACE> describe pod <POD_NAME>

Common causes include:

  • PVC not bound: Ensure the PersistentVolumeClaim is bound to a PersistentVolume
  • Namespace mismatch: The PVC must be in the same namespace as the MCPServer
  • Storage class issues: Verify the storage class exists and is available
  • Access mode conflicts: Check that the access mode is compatible with your setup
  • Mount path conflicts: Ensure mount paths don't conflict with existing directories

Permission profile errors

If the MCP server fails due to permission profile issues:

# Check if ConfigMap exists (for custom profiles)
kubectl -n <NAMESPACE> get configmap <CONFIGMAP_NAME>

# Verify ConfigMap content
kubectl -n <NAMESPACE> describe configmap <CONFIGMAP_NAME>

# Check operator logs for permission errors
kubectl -n toolhive-system logs -l app.kubernetes.io/name=toolhive-operator | grep -i permission

Common causes include:

  • Invalid profile name: Ensure built-in profile names are correct (none, network)
  • ConfigMap not found: Create the ConfigMap with the custom permission profile
  • Invalid JSON: Verify the permission profile JSON is valid
  • Missing key: Ensure the specified key exists in the ConfigMap

Resource limit issues

If pods are being killed due to resource constraints:

# Check resource usage
kubectl -n <NAMESPACE> top pods

# Check for resource limit events
kubectl -n <NAMESPACE> get events --sort-by='.lastTimestamp'

# Describe the pod for resource information
kubectl -n <NAMESPACE> describe pod <POD_NAME>

Solutions:

  • Increase resource limits: Adjust resources.limits in the MCPServer spec
  • Optimize resource requests: Set appropriate resources.requests values
  • Check node capacity: Ensure cluster nodes have sufficient resources
  • Review resource quotas: Check namespace resource quotas and limits

Debugging connectivity

To test connectivity between components:

# Port-forward to test direct access to the proxy
kubectl -n <NAMESPACE> port-forward service/<MCPSERVER_NAME> 8080:8080

# Test the connection locally
curl http://localhost:8080/health

# Check service endpoints
kubectl -n <NAMESPACE> get endpoints

Getting more information

For additional debugging information:

# Get all resources related to your MCP server
kubectl -n <NAMESPACE> get all -l app.kubernetes.io/instance=<MCPSERVER_NAME>

# Check operator events
kubectl -n <NAMESPACE> get events --field-selector involvedObject.kind=MCPServer

# Export MCPServer resource for inspection
kubectl -n <NAMESPACE> get mcpserver <NAME> -o yaml